Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mater Des ; 230: 111970, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2307890

ABSTRACT

After the pandemic of SARS-CoV-2, the use of face-masks is considered the most effective way to prevent the spread of virus-containing respiratory fluid. As the virus targets the lungs directly, causing shortness of breath, continuous respiratory monitoring is crucial for evaluating health status. Therefore, the need for a smart face mask (SFM) capable of wirelessly monitoring human respiration in real-time has gained enormous attention. However, some challenges in developing these devices should be solved to make practical use of them possible. One key issue is to design a wearable SFM that is biocompatible and has fast responsivity for non-invasive and real-time tracking of respiration signals. Herein, we present a cost-effective and straightforward solution to produce innovative SFMs by depositing graphene-based coatings over commercial surgical masks. In particular, graphene nanoplatelets (GNPs) are integrated into a polycaprolactone (PCL) polymeric matrix. The resulting SFMs are characterized morphologically, and their electrical, electromechanical, and sensing properties are fully assessed. The proposed SFM exhibits remarkable durability (greater than1000 cycles) and excellent fast response time (∼42 ms), providing simultaneously normal and abnormal breath signals with clear differentiation. Finally, a developed mobile application monitors the mask wearer's breathing pattern wirelessly and provides alerts without compromising user-friendliness and comfort.

2.
Biosensors (Basel) ; 12(12)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2258634

ABSTRACT

Wearable sensors and machine learning algorithms are widely used for predicting an individual's thermal sensation. However, most of the studies are limited to controlled laboratory experiments with inconvenient wearable sensors without considering the dynamic behavior of ambient conditions. In this study, we focused on predicting individual dynamic thermal sensation based on physiological and psychological data. We designed a smart face mask that can measure skin temperature (SKT) and exhaled breath temperature (EBT) and is powered by a rechargeable battery. Real-time human experiments were performed in a subway cabin with twenty male students under natural conditions. The data were collected using a smartphone application, and we created features using the wavelet decomposition technique. The bagged tree algorithm was selected to train the individual model, which showed an overall accuracy and f-1 score of 98.14% and 96.33%, respectively. An individual's thermal sensation was significantly correlated with SKT, EBT, and associated features.


Subject(s)
Masks , Railroads , Humans , Skin Temperature , Temperature , Thermosensing/physiology
3.
IEEE Sensors Journal ; 23(2):877-888, 2023.
Article in English | Scopus | ID: covidwho-2240578

ABSTRACT

Smart sensing technology has been playing tremendous roles in digital healthcare management over time with great impacts. Lately, smart sensing has awoken the world by the advent of smart face masks (SFMs) in the global fight against the deadly Coronavirus (Covid-19) pandemic. In turn, a number of research studies on innovative SFM architectures and designs are emerging. However, there is currently no study that has systematically been conducted to identify and comparatively analyze the emerging architectures and designs of SFMs, their contributions, socio-technological implications, and current challenges. In this article, we investigate the emerging SFMs in response to Covid-19 pandemic and provide a concise review of their key features and characteristics, design, smart technologies, and architectures. We also highlight and discuss the socio-technological opportunities posed by the use of SFMs and finally present directions for future research. Our findings reveal four key features that can be used to evaluate SFMs to include reusability, self-power generation ability, energy awareness and aerosol filtration efficiency. We discover that SFM has potential for effective use in human tracking, contact tracing, disease detection and diagnosis or in monitoring asymptotic populations in future pandemics. Some SFMs have also been carefully designed to provide comfort and safety when used by patients with other respiratory diseases or comorbidities. However, some identified challenges include standards and quality control, ethical, security and privacy concerns. © 2001-2012 IEEE.

4.
IEEE Sensors Journal ; : 1-1, 2022.
Article in English | Scopus | ID: covidwho-2192000

ABSTRACT

Smart sensing technology has been playing tremendous roles in digital healthcare management over time with great impacts. Lately, smart sensing has awoken the world by the advent of Smart Face Masks (SFM) in the global fight against the deadly Coronavirus (Covid-19) pandemic. In turn, a number of research studies on innovative SFM architectures and designs are emerging. However, there is currently no study that has systematically been conducted to identify and comparatively analyze the emerging architectures and designs of SFMs, their contributions, socio-technological implications, and current challenges. In this paper, we investigate the emerging SFMs in response to Covid-19 pandemic and provide a concise review of their key features and characteristics, design, smart technologies, and architectures. We also highlight and discuss the socio-technological opportunities posed by the use of SFMs and finally present directions for future research. Our findings reveal four key features that can be used to evaluate SFMs to include reusability, self-power generation ability, energy awareness and aerosol filtration efficiency. We discover that SFM has potential for effective use in human tracking, contact tracing, disease detection and diagnosis or in monitoring asymptotic populations in future pandemics. Some SFMs have also been carefully designed to provide comfort and safety when used by patients with other respiratory diseases or comorbidities. However, some identified challenges include standards and quality control, ethical, security and privacy concerns. IEEE

5.
2021 Ieee International Symposium on Medical Measurements and Applications (Ieee Memea 2021) ; 2021.
Article in English | Web of Science | ID: covidwho-2032315

ABSTRACT

The most frequent prodromes of COVID-19 infection are fever and signs/symptoms of incipient respiratory diseases such as cough and shortness of breath or tachypnea. However, it is not infrequent that in patients infected with COVID-19, in addition to respiratory manifestations, cardiac rhythm alterations are also present which can be an early sign of an acute cardiovascular syndrome. It is therefore of utmost importance, especially for health care and civil protection workers who are most exposed to the infection, to detect the prodromal symptoms of this infection in order to be able to make a diagnosis of possible positivity to COVID-19 infection as quickly as possible and therefore to provide their immediate insertion in the isolation/therapy protocols. Here a prototype of a smart face mask is presented: the AG47-SmartMask. In addition to having the function of both an active and passive anti COVID-19 filter, the latter by an electro-heated filter brought to a minimum temperature of 38 degrees C, the AG47-SmartMask also allows the continuous monitoring of numerous cardio-pulmonary variables. Several specific sensors are incorporated into the mask in an original way that assess the inside mask temperature, relative humidity and air pressure together with the auricular assessment of body temperature, heart rate and percentage of oxygen saturation of haemoglobin. Sensors work in synergy with an advanced telemedicine platform. To validate the device, twenty workers engaged in a vegetable packaging chain tested the tool simulating, while working, both tachypnea and cough, and the AG47-SmartMask faithfully quantified the simulated dyspnoic events.

SELECTION OF CITATIONS
SEARCH DETAIL